Ebenen I

Nach den Geraden kommen die Ebenen. Im dreidimensionalen Raum gibt es - anders als bei den Geraden - mehr als nur die Parameterdarstellung. In manchen Grundkursen wird nur die Parameterdarstellung der Ebene behandelt; aus diesem Grund wird das Kapitel unterteilt in Ebenen I und Ebenen II. Ebenen I behandelt nur die Parameterdarstellung der Ebene, im Kapitel Ebenen II werden dann zusätzlich die Normalenform und die Koordinatenform der Ebene besprochen.



Die Ebenengleichung in Parameterform

Nachdem du jetzt weißt, wie die vektorielle Darstellung von Geraden funktioniert, können wir jetzt einen Schritt weitergehen und uns mit der vektoriellen Darstellung von Ebenen im Raum beschäftigen. Zunächst wirst du die Parametergleichung der Ebene kennenlernen, die der Parametergleichung der Geraden sehr ähnlich ist.



Parametergleichung der Ebene - Wie ist sie aufgebaut, wie funktioniert sie?

 m13v0050  In diesem Einstiegsvideo wird erklärt, wie die vektorielle Darstellung einer Ebene in Raum funktioniert. Die Begriffe Stützvektor und Spannvektor werden erklärt. Du solltest am Ende verstehen, dass jeder Punkt der Ebene durch zwei Parameterwerte eindeutig bestimmt ist.  | auf  teilen



Liegt der Punkt auf der Ebene? | Punktprobe bei Parameterform

 m13v0062  In diesem Video wird gezeigt, wie man überprüft, ob ein gegebener Punkt auf einer Ebene liegt, die in Parameterform gegeben ist. Diese sogenannte Punktprobe ist ein sehr wichtiger Aufgabentyp, der fast garantiert in der ersten Klausur über Ebenen vorkommt. Hier muss man ein lineares Gleichungssystem lösen.  | auf  teilen



Wissens-Check: Liegen vier Punkte in einer gemeinsamen Ebene?

 m13v0262  Eine Abwandlung der Frage, ob ein Punkt auf einer Ebene liegt, ist die Frage, ob vier Punkte auf einer Ebene liegen. Erkennst du, warum das praktisch dieselbe Frage ist? Wiederum ist dies ein beliebter Aufgabentyp. | auf  teilen



Parametergleichung einer Ebene aus 3 Punkten konstruieren

 m13v0065  Eine Ebene ist eindeutig durch drei Punkte definiert (man kann eine Platte auf drei Punkten ablegen, ohne dass es irgendwo wackelt, wobei die Punkte allerdings nicht auf einer Geraden liegen dürfen). Wie man aus drei gegebenen Punkten eine Ebenengleichung in Parameterform aufstellen kann, lernst du in diesem Video. Du wirst auch lernen, dass es mehrere Möglichkeiten gibt, eine Ebenengleichung aufzustellen. Eine klausurtypische Aufgabe. | auf  teilen



Spurpunkte einer Ebene bestimmen (Ebene in Parameterform)

 m13v0165  In diesem Video wird vorgemacht, wie man die Spurpunkte einer Ebene bestimmt, wenn die Ebene in Parameterform angegeben ist. Spurpunkte sind die Schnittpunkte einer Ebene mit den Koordinatenachsen.  | auf  teilen



Punkt mit Parameter; Parameter so bestimmen, dass Punkt in der Ebene liegt

 m13v0263  Eine Abwandlung der Punktprobe: ein Punkt mit einem oder zwei Parametern a ist angegeben. Man soll den Wert von a so bestimmen, dass der Punkt auf der Ebene liegt. | auf  teilen



Weitere Konstruktionsmöglichkeiten von Ebenen (in Parameterform gegeben)

Neben der Konstruktion einer Ebene aus drei Punkten (siehe oben), gibt es noch weitere Möglichkeiten, mit denen eine Ebene eindeutig festgelegt wird. Die nächsten Videos behandeln diese Konstruktionsmöglichkeiten. Dies sind übrigens beliebte Aufgabentypen in Klausuren.



Ebene aus Gerade und Punkt konstruieren

 m13v0066  Eine Gerade und ein Punkt abseits dieser Geraden legt eindeutig die Lage einer Ebene im Raum fest. In diesem Video wird gezeigt, wie man bei gegebener Gerade und Punkt daraus die Ebenengleichung in Parameterform herleitet. | auf  teilen



Ebene aus zwei parallelen Geraden konstruieren

 m13v0067  Zwei parallele Geraden legen eindeutig die Lage einer Ebene im Raum fest. Hier lernst du, wie man die zugehörige Ebenengleichung in Parameterform daraus ermittelt. | auf  teilen



Ebene aus sich schneidenden Geraden

 m13v0068  Eine Ebene ist eindeutig bestimmt durch zwei sich schneidende Geraden. Die Geraden bilden dann ja so eine Art "Kreuz" auf die man die Ebene ablegen kann. In diesem Video lernst du, wie man aus den gegebenen Geradengleichungen zweier sich schneidender Geraden, die Parametergleichung der dadurch definierten Ebene aufstellen kann. | auf  teilen



Übung: Konstruktionsanweisung der Ebene gegeben; Parametergleichung aufstellen (Teil 1)

 m13v0230  In diesem Übungsvideo kannst du prüfen, ob du eine Parametergleichung einer Ebene aufstellen kannst, wenn die Konstruktionsweise der Ebene angegeben ist. Dies ist ein häufiger Aufgabentyp, der meistens dann in Klausuren abgefragt wird, wenn ihr gerade mit Ebenen im Unterricht angefangen habt und die Parameterdarstellung der Ebene als erstes kennengelernt habt. | Skript zum Download | auf  teilen




Dreieck und Parallelogramm als spezielle Ausschnitte von Ebenen



Liegt der Punkt innerhalb des Dreiecks oder Parallelogramms

 m13v0335  Die Spannvektoren einer Ebene spannen ein Dreieck bzw. ein Parallelogramm auf. In diesem Video wird gezeigt, wie man die Parametergleichung einer Ebene nutzen kann, um zu prüfen, ob ein Punkt innerhalb oder außerhalb eines Dreiecks bzw. Parallelogramms liegt. | auf  teilen



Ebenen (in Parameterform) und Geraden im Zusammenspiel



Lage Gerade (Parameterform) - Ebene (Parameterform)

 m13v0016  In diesem Video wird vorgemacht, wie man die gegenseitige Lage einer Gerade und einer Ebene untersucht, wenn sowohl Gerade als auch Ebene in Parameterform angegeben sind. Es gibt drei Möglichkeiten: (1.) die Gerade scheidet die Ebene - dann kann man auch den Schnittpunkt berechnen; (2.) die Gerade verläuft parallel zur Ebene; und (3.) die Gerade verläuft in der Ebene.  | auf  teilen



Besondere gegenseitige Lage von Gerade und Ebene überprüfen: Gerade schneidet Ebene senkrecht

 m13v0409  Bei dieser Übungsaufgabe ist ein Lösungsweg zur Untersuchung der gegenseitigen Lage von Gerade und Ebene beschrieben - allerdings ohne Kommentare. Du sollst nun kommentieren, was gemacht wurde, und warum... | Skript zum Download | auf  teilen



Besondere gegenseitige Lage von Gerade und Ebene überprüfen: Gerade liegt in der Ebene

 m13v0349  Bei dieser Übungsaufgabe ist ein Lösungsweg zur Untersuchung der gegenseitigen Lage von Gerade und Ebene beschrieben - allerdings ohne Kommentare. Du sollst nun kommentieren, was gemacht wurde, und warum... | Skript zum Download | auf  teilen