Binomialverteilung

In den vorigen Kapiteln hast du dich mit den Grundlagen der Wahrscheinlichkeitsrechnung vertraut gemacht: du hast Baumdiagramme zur Darstellung von mehrstufigen Zufallsexperimenten kennengelernt, und du hast das Konzept der Zufallsgröße kennengelernt, wodurch ein Ausgang eines Zufallsexperiments mit einem Zahlenwert einer Zufallsgröße verknüpft wird.
Im Folgenden werden wir einen einfachen, aber sehr Typ von Zufallsexperiment betrachten, bei denen es nur zwei Versuchsausgänge gibt, welche gemeinhin als "Treffer" bzw. "Niete" bezeichnet werden (ohne dass dies eine Wertung, sondern eher als Betrachtungsstandpunkt verstanden werden soll). Bei einem solchen Zufallsversuch spricht man von einem Bernoulli-Experiment. Wenn man so ein Bernoulli-Experiment n mal wiederholt, wobei die Versuchsausgänge unabhängig voneinander sind, so spricht man von einer Bernoulli-Kette der Länge n. Jetzt kann man durch eine Zufallsvariable zählen, wie oft bei n Durchgängen "Treffer" bzw. "Nieten" aufgetreten sind. Wie man Wahrscheinlichkeiten für Trefferzahlen berechnet, wie man daraus die sogenannte Binomialverteilung aufstellt, erfährst du in diesem Kapitel.

Hier gibt es Patreon "Behind the Scenes"-Content [→ mehr Info].



Bernoulli-Formel anwenden, Binomialverteilung, Wahrscheinlichkeiten berechnen (Übung)

 m13v0344  In diesem Video wird eine klassische Aufgabe aus dem hilfsmittelfreien Teil vieler Klausuren behandelt: Man hat einen Term zur Wahrscheinlichkeitberechnung angegeben und man soll das zugrundeliegende Ereignis beschreiben... | Skript zum Download | auf  teilen



Rechnen mit der Binomialverteilung und Schreibweisen | genau, mindestens, ... k Erfolge (Übung)

 m13v0345  In diesem Video soll noch einmal geübt werden, wie man ausgehend von einer Problemstellung den Ansatz zur Berechnung der Wahrscheinlichkeiten aufstellt. Insbesondere werden auch die Schreibweisen der B- und F-Funktion und die zugehörigen Taschenrechner-Befehle binompdf und binomCdf behandelt. | Skript zum Download | auf  teilen



Binomialverteilung berechnen, zeichnen; Zusammenhänge erkennen

 m13v0399  In diesem Video erfährst du, wie man eine Binomimalverteilung zu gegebener Bernoulli-Kettenlänge n und Trefferwahrscheinlichkeit berechnet und als Wahrscheinlichkeitsverteilungsdiagramm zeichnet. Außerdem wird auf die Verteilungsfunktion und den Zusammenhang der Binomialverteilung für Treffer- und Nieten-Wahrscheinlichkeit eingegangen. | Skript zum Download | auf  teilen



Wahrscheinlichkeitstabelle, Wahrscheinlichkeiten berechnen (So ähnlich im Abi gesehen)

 m13v0453  In diesem Video aus der Serie "So ähnlich im Abi gesehen" geht es um den Umgang mit der Tabelle der kumulierten Binomialverteilung. Du sollst mithilfe der dieser Tabelle die Wahrscheinlichkeit einer Treffer-Einzelwahrscheinlichkeit bzw. die Wahrscheinlichkeit für ein Intervall von Trefferzahlen bestimmen. | Skript zum Download | auf  teilen



Erwartungswert einer Binomialverteilung für n=1, 2, 3 bei beliebigem p

 m13v0487  In diesem Video wird die Formel für den Erwartungswert μ=n·p einer binomialverteilten Zufallsgröße für die Fälle n=1,2,3 bei beliebigem p bestätigt. Eine allgemeine Herleitung der Formel geht über das Schulniveaus etwas hinaus. | auf  teilen



Binomialverteilung - Zusammenhang n, p, mue und sigma

 m13v0401  In diesem Übungsvideo kannst du prüfen, ob du bei der Binomialverteilung den Zusammenhang zwischen n, p, mue und sigma kennst. Dabei ist n die Länge der Bernoulli-Kette, p die Trefferwahrscheinlichkeit, mue der Erwartungswert und sigma die Standardabweichung. Es sind jeweils zwei Parameter angegeben, die anderen beiden sollst du berechnen. | Skript zum Download | auf  teilen



Der Einfluss der Parameter n und p auf den Graphen der Binomialverteilung

 m13v0404  Eine Binomialverteilung ist durch die Parameter n (die Länge der Bernoulli-Kette) und p (der Trefferwahrscheinlichkeit) bestimmt. In diesem Video untersuchen wir, wie n und p den Verlauf des Verteilungsgraphen beeinflussen.  | auf  teilen



Warum ist die gegebene Verteilung keine Binomialverteilung?

 m13v0466  Bei dieser Aufgabe soll untersucht werden, ob eine gegebene Wahrscheinlichkeitsverteilung tatsächlich eine Binomialverteilung ist oder nicht. Hier ist dein Wissen über Eigenschaften von Binomialverteilungen gefragt. | Skript zum Download | auf  teilen



Binomialverteilung - Verteilungsgraph einer Verteilung zuordnen (Übung)

 m13v0402  Mit diesem Übungsvideo kannst du überprüfen, ob du verstanden hast, wie die Parameter n und p die Gestalt des Graphen der Binomialverteilung beeinflussen. Hier sind drei Graphen gegeben und du sollst die richtige Binomialverteilung zuordnen. | Skript zum Download | auf  teilen



Anwendung der Bernoulli-Formel beim Würfeln

 m13v0427  Dies ist ein Übungsvideo zur Anwendung der Binomialverteilung beim Würfeln, speziell bei Aufgaben, wo nach der Wahrscheinlichkeit für "genau", "mindestens", "höchstens" soundso viele Sechsen gefragt wird. Dies sind beliebte Aufgaben für den hilfsmittelfreien Teil in Klausuren. | auf  teilen



Binomialverteilung Typische Aufgaben (1): groß P bestimmen (mindestens, höchstens, genau k Treffer)

 m13v0347  In diesem ersten Video erfährst, wie du die Wahrscheinlichkeit für Ereignisse berechnest, deren Trefferzahl k mit Vokabeln wie genau, mindestens, höchstens, von ... bis, weniger als, mehr als beschrieben wird. Punktwahrscheinlichkeiten werden mit der B-Funktion bzw. der GTR-Funktion binomPdf berechnet; kumulierte Wahrscheinlichkeiten werden über die F-Funktion bzw. mittels binomCdf berechnet.  | auf  teilen



Binomialverteilung - Typische Aufgaben (2a): n bestimmen, dreimal-mal-mindestens-Aufgabe

 m13v0348  Ein sehr beliebter Aufgabentyp ist die sogenannte "dreimal-mindestens-Aufgabe", auch "mindestens-mindestens-mindestens-Aufgabe" genannt. Hierbei soll bestimmt werden, wie groß n mindestens sein muss, wenn man für mindestens einen Treffer einen Mindestwert einer Ereigniswahrscheinlichkeit fordert. Anders ausgedrückt: Wie groß muss n mindestens sein, damit P(X≥1) ≥ (gegebene Mindest-Ereigniswahrscheinlichkeit). Hier solltest du dir merken, dass die Lösung dieser drei-mal-mindestens-Aufgabe über die Gegenwahrscheinlichkeit 1-P(X=0) läuft, bei der man zunächst die Bernoulli-Formel aufstellt, die eine Exponentialgleichung liefert, die man dann über den Logarithmus löst...  | auf  teilen



Binomialverteilung - Typische Aufgaben (2b): n bestimmen, Überbuchungsproblem

 m13v0350  Wenn man nicht - wie im vorigen Video - den Spezialfall P(X≥1) betrachtet, sondern die dreimal-mindestens-Aufgabe für P(X≥k) erweitert, muss man das gesuchte n aus einer Tabelle mit kumulierten Wahrscheinlichkeiten ermitteln. Am beliebten Aufgabentyp "Überbuchung" wird dies vorgemacht... | auf  teilen



Binomialverteilung - Typische Aufgaben (3): k bestimmen

 m13v0353  Natürlich kann man bei gegebener Kettenlänge n und Trefferwahrscheinlichkeit p auch die benötigte Trefferzahl oder ein Trefferzahl-Intervall ermitteln, damit eine geforderte Ereigniswahrscheinlichkeit P erreicht wird. | auf  teilen



Binomialverteilung - Typische Aufgaben (4a): klein p bestimmen, dreimal-mindestens-Aufgabe

 m13v0356  Die Bestimmung der Trefferwahrscheinlichkeit klein p ist ebenfalls ein beliebter Aufgabentyp. Hier wird zunächst die Aufgabenformulierung einer dreimal-mindestens-Aufgabe behandelt. Dabei geht man über die Bernoulli-Formel und berechnet p durch Lösen einer Wurzel-Gleichung. | auf  teilen



Binomialverteilung - Typische Aufgaben (4b): klein p graphisch mit GTR bestimmen

 m13v0358  In diesem Video wird vorgemacht, wie man klein p graphisch mittels GTR bestimmt, durch Auftragen der binomcdf-Funktion in Abhängigkeit von p gegen die Grenzwahrscheinlichkeit.  | auf  teilen