Binomialverteilung

In den vorigen Kapiteln hast du dich mit den Grundlagen der Wahrscheinlichkeitsrechnung vertraut gemacht: du hast Baumdiagramme zur Darstellung von mehrstufigen Zufallsexperimenten kennengelernt, und du hast das Konzept der Zufallsgröße kennengelernt, wodurch ein Ausgang eines Zufallsexperiments mit einem Zahlenwert einer Zufallsgröße verknüpft wird.
Im Folgenden werden wir einen einfachen, aber sehr wichtigen Typ von Zufallsexperiment betrachten, bei denen es nur zwei Versuchsausgänge gibt, welche gemeinhin als "Treffer" bzw. "Niete" bezeichnet werden (ohne dass dies eine Wertung, sondern eher als Betrachtungsstandpunkt verstanden werden soll). Bei einem solchen Zufallsversuch spricht man von einem Bernoulli-Experiment. Wenn man so ein Bernoulli-Experiment n mal wiederholt, wobei die Versuchsausgänge unabhängig voneinander sind, so spricht man von einer Bernoulli-Kette der Länge n. Jetzt kann man durch eine Zufallsvariable zählen, wie oft bei n Durchgängen "Treffer" bzw. "Nieten" aufgetreten sind. Wie man Wahrscheinlichkeiten für Trefferzahlen berechnet, wie man daraus die sogenannte Binomialverteilung aufstellt, erfährst du in diesem Kapitel.





An dieser Stelle gibt es Patreon "Behind the Scenes"-Content [→ freischalten] [→ mehr Info zum Freischalten].



Verstehst du, wie die Bernoulli-Formel funktioniert (MST-Serie)

 m13v0604  Eine einfache Einstiegsaufgabe zur Berechnung der Wahrscheinlichkeit einer binomialverteilten Zufallsgröße. Hier kannst du prüfen, ob du den Zusammenhang zwischen Länge der Bernoulli-Kette, Trefferzahl und Trefferwahrscheinlichkeit verstanden hast. | Skript zum Download | auf  teilen



Bernoulli-Formel anwenden, Binomialverteilung, Wahrscheinlichkeiten berechnen (Übung)

 m13v0344  In diesem Video wird eine klassische Aufgabe aus dem hilfsmittelfreien Teil vieler Klausuren behandelt: Man hat einen Term zur Wahrscheinlichkeitberechnung angegeben und man soll das zugrundeliegende Ereignis beschreiben... | Skript zum Download | auf  teilen



Rechnen mit der Binomialverteilung und Schreibweisen | genau, mindestens, ... k Erfolge (Übung)

 m13v0345  In diesem Video soll noch einmal geübt werden, wie man ausgehend von einer Problemstellung den Ansatz zur Berechnung der Wahrscheinlichkeiten aufstellt. Insbesondere werden auch die Schreibweisen der B- und F-Funktion und die zugehörigen Taschenrechner-Befehle binompdf und binomCdf behandelt. | Skript zum Download | auf  teilen



Binomialverteilung: Berechnungsterme verstehen
Dieses Video ist momentan noch exklusiv für meine Youtube-Kanalmitglieder freigeschaltet.
Klicke hier und werde Level 2 (mathehoch13 Club-Member)-Kanalmitglied. Damit erhältst Vorab-Zugang zu allen Videos in der Produktionspipeline.

 m13v0668  Ebenfalls ein häufiger Aufgabentyp im Themenkomplex Binomialverteilung: Zuordnung des richtigen Berechnungsterms zur Wahrscheinlichkeit eines gegebenen Ereignisses.



Binomialverteilung berechnen, zeichnen; Zusammenhänge erkennen

 m13v0399  In diesem Video erfährst du, wie man eine Binomimalverteilung zu gegebener Bernoulli-Kettenlänge n und Trefferwahrscheinlichkeit berechnet und als Wahrscheinlichkeitsverteilungsdiagramm zeichnet. Außerdem wird auf die Verteilungsfunktion und den Zusammenhang der Binomialverteilung für Treffer- und Nieten-Wahrscheinlichkeit eingegangen. | Skript zum Download | auf  teilen



Kugeln mit Zurücklegen aus Säckchen ziehen (So ähnlich im Abi gesehen)

 m13v0580  In diesem Video geht es darum, dass du die richtigen Ansätze für die Berechnung von Wahrscheinlichkeiten beim Ziehen mit Zurücklegen anwendest. Zwei Fälle werden in dieser Aufgabe behandelt. Ein Video aus der Serie "So ähnlich im Abi gesehen". | Skript zum Download | auf  teilen



Binomialverteilung: Übung zur diskreten und kumulierten Wahrscheinlichkeitsverteilungstabelle

 m13v0619  Mit dieser Übungsaufgabe kannst du dein Verständnis überprüfen, was den Aufbau und den Zusammenhang zwischen der diskreten und der kumulierten Wahrscheinlichkeitsverteilungstabelle betrifft. Außerdem sollst du anhand der Wahrscheinlichkeiten in der Tabelle die Parameter n und p der zugrundeliegenden Binomialverteilung bestimmen. | Skript zum Download | auf  teilen



Wahrscheinlichkeitstabelle, Wahrscheinlichkeiten berechnen (So ähnlich im Abi gesehen)

 m13v0453  In diesem Video aus der Serie "So ähnlich im Abi gesehen" geht es um den Umgang mit der Tabelle der kumulierten Binomialverteilung. Du sollst mithilfe der dieser Tabelle die Wahrscheinlichkeit einer Treffer-Einzelwahrscheinlichkeit bzw. die Wahrscheinlichkeit für ein Intervall von Trefferzahlen bestimmen. | Skript zum DownloadHier gibt es Patron-Extras | auf  teilen



Wahrscheinlichkeiten berechnen - geschicktes Rechnen mit der Binomialverteilung (So ähnlich im Abi gesehen)

 m13v0618  Bei dieser Aufgabe kommt es darauf an, dass du teilweise gegebene Wahrscheinlichkeiten und die besonderen Eigenschaften einer symmetrischen Binomialverteilung geschickt anwendest, um eine gesuchte Einzelwahrscheinlichkeit zu bestimmen. Dies ist ein Video aus der Serie "So ähnlich im Abi gesehen". | Skript zum Download | auf  teilen



Binomialverteilung und Bernoulli-Formel (So ähnlich im Abi gesehen)

 m13v0543  Bei dieser Aufgabe ist eine Gleichung gegeben, die eine Beziehung zwischen zwei Einzelwahrscheinlichkeiten für eine binomialverteilte Zufallsgröße angibt, und die zugehörige Trefferwahrscheinlichkeit p, für die diese Beziehung zutrifft, ist zu bestimmen. Dies ist ein Video aus der Serie "So ähnlich im Abi gesehen". | Skript zum DownloadHier gibt es Patron-Extras | auf  teilen



Erwartungswert einer Binomialverteilung für n=1, 2, 3 bei beliebigem p

 m13v0487  In diesem Video wird die Formel für den Erwartungswert μ=n·p einer binomialverteilten Zufallsgröße für die Fälle n=1,2,3 bei beliebigem p bestätigt. Eine allgemeine Herleitung der Formel geht über das Schulniveaus etwas hinaus. | Skript zum Download | auf  teilen



Binomialverteilung - Zusammenhang n, p, mue und sigma

 m13v0401  In diesem Übungsvideo kannst du prüfen, ob du bei der Binomialverteilung den Zusammenhang zwischen n, p, mue und sigma kennst. Dabei ist n die Länge der Bernoulli-Kette, p die Trefferwahrscheinlichkeit, mue der Erwartungswert und sigma die Standardabweichung. Es sind jeweils zwei Parameter angegeben, die anderen beiden sollst du berechnen. | Skript zum Download | auf  teilen



Parameter einer Binomialverteilung bestimmen

 m13v0602  Von einer Binomialverteilung (Verteilung 1) kennst du n und p. Jetzt sollst du eine andere Binomialverteilung (Verteilung 2) bestimmen, die denselben Erwartungswert hat wie Verteilung 1, aber ihre Standardabweichung soll das √1,5-fache betragen... Worin stimmen die Verteilungsgraphen von Verteilung 1 und Verteilung 2 überein, worin unterscheiden sie sich? | Skript zum Download | auf  teilen



Binomialverteilung: Ereigniswahrscheinlichkeit groß P aus n und Erwartungswert μ bestimmen

 m13v0548  Bei dieser Aufgabe ist die Ereigniswahrscheinlichkeit für einen Treffer bei einem Bernoulli-Experiment mit n=3 zu bestimmen. Dazu benötigt man natürlich auch die Trefferwahrscheinlichkeit p, welche aber nicht direkt gegeben ist. Wohl kennt man den Erwartungswert μ=2. Mit gegebenem n und μ zuerst p bestimmen, um dann zu P zu gelangen − darum geht es in dieser Aufgabe aus der Serie "So ähnlich im Abi gesehen". | Skript zum DownloadHier gibt es Patron-Extras | auf  teilen



Parameter n und p einer Binomialverteilung bestimmen, wenn Erwartungswert und Varianz gegeben sind

 m13v0647  Eine Übungsaufgabe, bei der du deine Kenntnisse über den Zusammenhang zwischen Erwartungswert, Varianz und den Parametern n und p einer Binomialverteilung überprüfen kannst. | Skript zum Download | auf  teilen



Parameter einer Binomialverteilung bestimmen und Wahrscheinlichkeit berechnen
Dieses Video ist momentan noch exklusiv für meine Youtube-Kanalmitglieder freigeschaltet.
Klicke hier und werde Level 2 (mathehoch13 Club-Member)-Kanalmitglied. Damit erhältst Vorab-Zugang zu allen Videos in der Produktionspipeline.

 m13v0648  



Grundaufgaben Binomialverteilung (So ähnlich im Abi gesehen)

 m13v0538  In diesem Video werden ein paar typische hilfsmittelfreie Grundaufgaben zur Binomialverteilung behandelt: (1.) Berechnung von Erwartungswert und Standardabweichung; (2.) Identifizierung eines korrekten Berechnungsterms zur Berechnung einer Wahrscheinlichkeit und (3.) Bestimmung der Wahrscheinlichkeit für mindestens einen Treffer. | Skript zum Download | auf  teilen



Der Einfluss der Parameter n und p auf den Graphen der Binomialverteilung

 m13v0404  Eine Binomialverteilung ist durch die Parameter n (die Länge der Bernoulli-Kette) und p (der Trefferwahrscheinlichkeit) bestimmt. In diesem Video untersuchen wir, wie n und p den Verlauf des Verteilungsgraphen beeinflussen.  | auf  teilen



Eigenschaften der Binomialverteilung kennen (So ähnlich im Abi gesehen)

 m13v0567  Bei dieser Aufgabe aus der Serie "So ähnlich im Abi gesehen" geht es darum, dass du deine Kenntnisse über die Eigenschaften der Binomialverteilung in Abhängigkeit der Parameter n und p geschickt anwendest. Gegeben ist n=50; für welche Werte der Trefferwahrscheinlichkeit p gilt: P(X=10) > P(X=40) ? | Skript zum Download | auf  teilen



Warum ist die gegebene Verteilung keine Binomialverteilung?

 m13v0466  Bei dieser Aufgabe soll untersucht werden, ob eine gegebene Wahrscheinlichkeitsverteilung tatsächlich eine Binomialverteilung ist oder nicht. Hier ist dein Wissen über Eigenschaften von Binomialverteilungen gefragt. | Skript zum DownloadHier gibt es Patron-Extras | auf  teilen



Binomialverteilung - Verteilungsgraph einer Verteilung zuordnen (Übung)

 m13v0402  Mit diesem Übungsvideo kannst du überprüfen, ob du verstanden hast, wie die Parameter n und p die Gestalt des Graphen der Binomialverteilung beeinflussen. Hier sind drei Graphen gegeben und du sollst die richtige Binomialverteilung zuordnen. | Skript zum Download | auf  teilen



Anwendung der Bernoulli-Formel beim Würfeln

 m13v0427  Dies ist ein Übungsvideo zur Anwendung der Binomialverteilung beim Würfeln, speziell bei Aufgaben, wo nach der Wahrscheinlichkeit für "genau", "mindestens", "höchstens" soundso viele Sechsen gefragt wird. Dies sind beliebte Aufgaben für den hilfsmittelfreien Teil in Klausuren. | auf  teilen



Binomialverteilung Typische Aufgaben (1): groß P bestimmen (mindestens, höchstens, genau k Treffer)

 m13v0347  In diesem ersten Video erfährst, wie du die Wahrscheinlichkeit für Ereignisse berechnest, deren Trefferzahl k mit Vokabeln wie genau, mindestens, höchstens, von ... bis, weniger als, mehr als beschrieben wird. Punktwahrscheinlichkeiten werden mit der B-Funktion bzw. der GTR-Funktion binomPdf berechnet; kumulierte Wahrscheinlichkeiten werden über die F-Funktion bzw. mittels binomCdf berechnet.  | auf  teilen



Binomialverteilung - Typische Aufgaben (2a): n bestimmen, dreimal-mal-mindestens-Aufgabe

 m13v0348  Ein sehr beliebter Aufgabentyp ist die sogenannte "dreimal-mindestens-Aufgabe", auch "mindestens-mindestens-mindestens-Aufgabe" genannt. Hierbei soll bestimmt werden, wie groß n mindestens sein muss, wenn man für mindestens einen Treffer einen Mindestwert einer Ereigniswahrscheinlichkeit fordert. Anders ausgedrückt: Wie groß muss n mindestens sein, damit P(X≥1) ≥ (gegebene Mindest-Ereigniswahrscheinlichkeit). Hier solltest du dir merken, dass die Lösung dieser drei-mal-mindestens-Aufgabe über die Gegenwahrscheinlichkeit 1-P(X=0) läuft, bei der man zunächst die Bernoulli-Formel aufstellt, die eine Exponentialgleichung liefert, die man dann über den Logarithmus löst...  | auf  teilen



Binomialverteilung - Typische Aufgaben (2b): n bestimmen, Überbuchungsproblem

 m13v0350  Wenn man nicht - wie im vorigen Video - den Spezialfall P(X≥1) betrachtet, sondern die dreimal-mindestens-Aufgabe für P(X≥k) erweitert, muss man das gesuchte n aus einer Tabelle mit kumulierten Wahrscheinlichkeiten ermitteln. Am beliebten Aufgabentyp "Überbuchung" wird dies vorgemacht... | auf  teilen



Binomialverteilung - Typische Aufgaben (3): k bestimmen

 m13v0353  Natürlich kann man bei gegebener Kettenlänge n und Trefferwahrscheinlichkeit p auch die benötigte Trefferzahl oder ein Trefferzahl-Intervall ermitteln, damit eine geforderte Ereigniswahrscheinlichkeit P erreicht wird. | auf  teilen



Binomialverteilung - Typische Aufgaben (4a): klein p bestimmen, dreimal-mindestens-Aufgabe

 m13v0356  Die Bestimmung der Trefferwahrscheinlichkeit klein p ist ebenfalls ein beliebter Aufgabentyp. Hier wird zunächst die Aufgabenformulierung einer dreimal-mindestens-Aufgabe behandelt. Dabei geht man über die Bernoulli-Formel und berechnet p durch Lösen einer Wurzel-Gleichung. | auf  teilen



Binomialverteilung - Typische Aufgaben (4b): klein p graphisch mit GTR bestimmen

 m13v0358  In diesem Video wird vorgemacht, wie man klein p graphisch mittels GTR bestimmt, durch Auftragen der binomcdf-Funktion in Abhängigkeit von p gegen die Grenzwahrscheinlichkeit.  | auf  teilen



Ansatz einer Berechnungsgleichung für Binomialwahrscheinlichkeit interpretieren (So ähnlich im Abi gesehen)

 m13v0557  Bei dieser Aufgabe aus der Serie "So ähnlich im Abi gesehen" ist die Gleichung geben, mit der man den Parameter n einer Binomialverteilung bestimmen soll. Anhand dieser Gleichung sollst du die Aufgabenstellung rekonstruieren, die dieser Berechnung zugrunde liegt. Die Interpretation von Berechnungstermen oder Gleichungen ist ein relativ häufiger Aufgabentyp zu Binomialverteilungen. | Skript zum Download | auf  teilen



Binomialverteilung: Was ist der Berechnungsterm für die Wahrscheinlichkeit? | MST-Serie
Dieses Video ist momentan noch exklusiv für meine Youtube-Kanalmitglieder freigeschaltet.
Klicke hier und werde Level 2 (mathehoch13 Club-Member)-Kanalmitglied. Damit erhältst Vorab-Zugang zu allen Videos in der Produktionspipeline.

 m13v0680  Eine weitere Aufgabe aus der Serie "Mathematisches Schnellkrafttraining". Wieder mal geht es um die Mathematisierung einer Aussage. Findet du den geeigneten Berechnungsterm für den beschriebenen Sachverhalt?



MST: Berechnungsterme für Ereigniswahrscheinlichkeit zuordnen

 m13v0597  In diesem Video wird ein häufiger Aufgabentyp zur Binomialverteilung behandelt: Es geht darum für eine Ereignisbeschreibung den passenden Berechnungsterm herauszufinden. Eine Aufgabe aus der Serie "Mathematisches Schnellkrafttraining". | Skript zum Download | auf  teilen



MST: Ziehen mit Zurücklegen. Richtige Berechnungsterme für Wahrscheinlichkeiten erkennen

 m13v0598  Eine weitere Aufgabe aus der Serie "Mathematisches Schnellkrafttraining", wobei es darum geht, für ein beschriebenes Ereignis für eine binomialverteilte Zufallsgröße den richtigen Berechnungsterm für die Wahrscheinlichkeit herauszufinden. | Skript zum Download | auf  teilen



Erwartungswert und Wahrscheinlichkeit für binomialverteilte Zufallsgröße (So ähnlich im Abi gesehen)

 m13v0572  Diese abiturtypische Aufgabe besteht aus zwei Teilen, die aufeinander aufbauen: zum einen die Ermittlung des Erwartungswertes einer Zufallsgröße und anschließend die Berechnung der Wahrscheinlichkeit eines Ereignisses mit binomialverteilter Zufallsgröße. Dieses Video aus der Serie "So ähnlich im Abi gesehen" wurde inspiriert durch die Abiklausur aus NRW im Jahr 2019. | Skript zum Download | auf  teilen



Rubbellose (So ähnlich im Abi gesehen)

 m13v0603  Dies ist eine mehrteilige Anwendungsaufgabe zur Binomialverteilung. Es geht um das Ziehen von Rubbellosen. Zum einen sollst du hier geeignete Berechnungsterme für bestimmte kumulierte Wahrscheinlichkeiten aufstellen, zum anderen sollst du bei vorgegebenen Berechnungstermen erkennen, welchen Wahrscheinlichkeiten dies im Kontext entspricht. | Skript zum Download | auf  teilen